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...but objectives often conflict with each other!
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Motivation

This is characterized by the concept of Pareto optimality.
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Contributions
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❏ We presented the first 
method to discover 
continuous approximations 
to Pareto fronts for large 
deep-learning problems.

Solution 
type

Problem 
size

Hillermeier 01
Martin & Schutze 18

Continuous Small

Chen et al. 18
Kendall et al. 18
Sener & Koltun 18

Single 
discrete

Large

Lin et al. 19
Multiple 
discrete

Large

Ours Continuous Large
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Method overview
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Pareto Expansion



Method overview
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Continuous
Parameterization



Challenges

❏ The most efficient direction for expansion is unknown.
❏ How to recover the Pareto front from one solution?

❏ Deep-learning parameter space has large dimensions.

❏ How to scale the method up for large-size problems?

❏ Pareto solutions are discrete.
❏ How to build a continuous Pareto front from them?
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Efficient Pareto-front expansion
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❏ Necessary conditions
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❏ Necessary conditions

Efficient Pareto-front expansion
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𝜶

❏ Specifically:



Efficient Pareto-front expansion

17

x(𝜖)

x(-𝜖)

x*=x(0)



Efficient Pareto-front expansion
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Efficient Pareto-front expansion
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Efficient Pareto-front expansion
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Challenges
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❏ The most efficient direction for expansion is unknown.
❏ How to recover the Pareto front from one solution?

❏ Deep-learning parameter space has large dimensions.

❏ How to scale the method up for large-size problems?

❏ Pareto solutions are discrete.
❏ How to build a continuous Pareto front from them?
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Hessian

#parameters

#p
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❏ Hessian: HUGE (>100 T 

elements to compute or 

store)

❏ Hessian
-1

 : EXPENSIVE

(>11M for ResNet-18)

Scaling it up: the large Hessian issue
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Hessian Vector

Multiply

Backward x 2Cheap!

Scaling it up: Hessian-vector products (HVP)



Scaling it up: HVP implementation

def hessian_vector_product(loss, network, v):

    params = network.parameters()

    jacobian = torch.autograd.grad(loss, params, create_graph=True)

    dot = v @ nn.utils.parameters_to_vector(jacobian)

    hvp = torch.autograd.grad(dot, params)

    return nn.utils.parameters_to_vector(hvp)
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Scaling it up: Krylov subspace method

Key features

❏ More iterations (bounded by the matrix size) = better solutions

❏ Each iterations requires matrix-vector products only!

27Applying the Conjugate Gradient method to solve a linear system of size 100 x 100.



Scaling it up: Implementation
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❏ Lower residual is better

❏ Quick convergence 

compared with the 

matrix size

#iteration

re
si

d
u

al

∼60 iterations → 1e-5

Deep-learning benchmark test (Hessian size = 15002)



Initial

>10k BP

60x2 BP

Are 60 iterations cheap?
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Scaling it up: Implication
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Initial

>10k BP

Zero-order method
(re-training)

Are 60 iterations cheap? Yes!

Initial

>10k BP

60x2 BP

First-order method 
(warm-start SGD)

Initial

>10k BP

60x2 BP

Second-order method
(ours)



Challenges
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❏ The most efficient direction for expansion is unknown.
❏ How to recover the Pareto front from one solution?

❏ Deep-learning parameter space has large dimensions.

❏ How to scale the method up for large-size problems?

❏ Pareto solutions are discrete.
❏ How to build a continuous Pareto front from them?



Challenges: Continuous Parameterization
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Grow some solutions.



Challenges: Continuous Parameterization
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Grow more solutions.



Challenges: Continuous Parameterization
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Grow even more solutions from more starting points.



Challenges: Continuous Parameterization
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Build continuous parameterization from interpolation.



Challenges: Continuous Parameterization
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Filter out others and keep Pareto optimal solutions only.



Experiments

❏ Synthetic Examples

❏ Pareto Expansion

❏ Continuous Parameterization

❏ Ablation Study
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❏            = Analytical Pareto set and front

❏            = Gradient directions

❏ Expanding along the gradients deviates from 
the true Pareto front.

Synthetic Example: ZDT2-Variant
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Synthetic Example: ZDT2-Variant
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3D parameter space

v
v

𝛻f1
𝛻f2

𝛻f2 𝛻f1

2D performance space

❏            = Analytical Pareto set and front

❏            = Our method

❏ Tangent to analytical Pareto set

Pareto front

Pareto set



Sufficiency Test
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❏ Color = different start

❏ Lower left       = better

❏ Large coverage

MultiMNIST



Necessity Test
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❏ Expanded from

❏ Lower left       = better

❏ Ours = most effective 

exploration

MultiMNIST



Efficiency Comparison
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❏ Our method costs less 

computation than 

previous method.

#Forward/Backward-Propagation



❏ Expanded from       s

❏ Red and blue solutions 

construct the continuous 

Pareto front

❏ Gray ones are dominated

Continuous Parameterization
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Ablation Study: #iteration
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❏ Color = #iteration

❏ Lower left       = better

❏ 50 iterations = the best!

#iteration



Summary

❏ Second-order Hessian matrices reveal useful tangent 
information about Pareto fronts.
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Summary

❏ Second-order Hessian matrices reveal useful tangent 
information about Pareto fronts.

❏ Efficient Hessian-vector product in neural networks unlocks 
expanding Pareto sets with second-order information.

❏ Continuous, first-order accurate Pareto fronts can be 
obtained by linearly interpolating dense solutions on the 
tangent plane.
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Thank you!

Code

https://github.com/mit-g
fx/ContinuousParetoMTL
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