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Motivation

...but objectives often conflict with each other!
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Motivation

This is characterized by the concept of Pareto optimality.

Errorin task 2
A P t ti |
areto optima
solutions!
e
“/ /
@
®
+ >‘

Errorin task 1



Motivation

This is characterized by the concept of Pareto optimality.

Error in task 2 A \

Pareto optimal

solutions!
Pareto front

\1////

Errorin task 1

-1



Related work
Multi-objective optimization

lere exist vectors AeR™ and aeR*, wit
=1, such that

k m
Y o Vfi(x*)+ Y A Vh(x*) =0,
i=1 j=1

A £ Solution  Problem
type size
hi(x*)=0, =i L 5 s m
deﬁnethescalar-valuedfuncti:)n *e 5 HI”ermEIer 01 Continuous Sma”
SRR e m L e o Martin & Schutze 18
Hillermeier Martin & Schutze
2001 2018




Related work

Multi-objective optimization

lere exist vectors AeR™ and aeR*, wit
=1, such that

k m
Y o Vfi(x*)+ Y A Vh(x*) =0,
i=1 j=1

hi(x*)=0, i=1,. 00 m.

define the scalar-valued function

g2a: R"5R, x> go(x)= él o; fi(x),
Hillermeier
2001

Multi-task lea

Sener & Koltun
2018

e jg Solution Problem
N N ¢ type size
= Hillermeier 01 Continuous Small
N Martin & Schutze 18
Martin & Schutze
2018 Chen et al. 18 Single
rnin Kendall et al. 18 discret Large
R g Sener & Koltun 18 SCrete
I} /II " IVIUIti Ie
7 4 Lin et al. 19 . P Large
N\ ) discrete

<+——— Task 1 Error Ly

Lin et al.
2019



Contributions

O We presented the first Solution  Problem
. type size
method to discover
continuous approximations Hillermeier 01 Continuous  Small
Martin & Schutze 18
to Pareto fronts for large
deep-learning problems. Chen etal. 18 Single
Kendall et al. 18 di ; Large
Sener & Koltun 18 IScrete
Lin et al. 19 Multlple Large
discrete
Ours Continuous Large




f2(z)

Method overview

v Initial

Pareto optimal solution

10



Method overview

\ Pareto Expansion

@
> e—,

11



f2(z)

Method overview

; Continuous
’ Parameterization

fi(z)

12



Challenges
[d The most efficient direction for expansion is unknown.

4 How to recover the Pareto front from one solution?

[d Deep-learning parameter space has large dimensions.
d  How to scale the method up for large-size problems?

[ Pareto solutions are discrete.
4 How to build a continuous Pareto front from them?
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Efficient Pareto-front expansion
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Efficient Pareto-front expansion

3 [d Necessary conditions

Y a;Vfi(x*)=0
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Efficient Pareto-front expansion
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Efficient Pareto-front expansion
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Efficient Pareto-front expansion
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Efficient Pareto-front expansion
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Efficient Pareto-front expansion
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Efficient Pareto-front expansion
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Challenges

1 The most efficient direction for expansion is unknown.

Jd How to recover the Pareto front from one solution?

[d Deep-learning parameter space has large dimensions.
d  How to scale the method up for large-size problems?

[d Pareto solutions are discrete.
Jd How to build a continuous Pareto front from them?

23



H#parameters

Scaling it up: the large Hessian issue

(>11M for ResNet-18)
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Scaling it up: Hessian-vector products (HVP)
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Scaling it up: HVP implementation

def hessian_vector_product(loss, network, v):

params = network.parameters()

jacobian = torch.autograd.grad(loss, params, create graph=True)

dot

v @ nn.utils.parameters_to_vector(jacobian)

hvp

torch.autograd.grad(dot, params)

return nn.utils.parameters_to_vector(hvp)
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Scaling it up: Krylov subspace method

Key features

(1 More iterations (bounded by the matrix size) = better solutions

1 Each iterations requires matrix-vector products only!
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Applying the Conjugate Gradient method to solve a linear system of size 100 x 100.
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Scaling it up: Implementation

Deep-learning benchmark test (Hessian size = 15002)
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Scaling it up: Implication

Are 60 iterations cheap?
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Scaling it up: Implication

Are 60 iterations cheap? Yes!
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Challenges

1 The most efficient direction for expansion is unknown.

J How to recover the Pareto front from one solution?

[d Deep-learning parameter space has large dimensions.
Jd  How to scale the method up for large-size problems?

4 Pareto solutions are discrete.
4 How to build a continuous Pareto front from them?
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Challenges: Continuous Parameterization

Grow some solutions.




Challenges: Continuous Parameterization

Grow more solutions.




Challenges: Continuous Parameterization

Grow even more solutions from more starting points.




Challenges: Continuous Parameterization

Build continuous parameterization from interpolation.




Challenges: Continuous Parameterization

Filter out others and keep Pareto optimal solutions only.




Experiments

Synthetic Examples

Pareto Expansion

Continuous Parameterization

Ablation Study
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Synthetic Example: ZDT2-Variant

3D parameter space 2D performance space
Pareto set oo
V / 0.92
< ‘fl — W
Qe vaz 0.88 .
***Pareto front A
*5' i 0-8050 0.24 0.28 0.32 0.36 0.40

f1

Q 8 *._= Analytical Pareto set and front
d <«— = Gradient directions

[d Expanding along the gradients deviates from
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Synthetic Example: ZDT2-Variant

3D parameter space
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method

[d Tangent to analytical Pareto set
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Sufficiency Test

MultiMNIST

Task 2 Top-1 Error
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[d Color = different start

d Lower left 0 = better

[d Large coverage
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Efficiency Comparison

##Forward/Backward-Propagation

B ParetoMTL @ Ours W method costs les

computation than
previous method.
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Continuous Parameterization
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Red and blue solutions
construct the continuous
Pareto front

Gray ones are dominated
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Ablation Study: #iteration

Hiteration
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A Color = #iteration

d Lower left 0 = better

[ 50 iterations = the best!
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Summary

[d Second-order Hessian matrices reveal useful tangent
information about Pareto fronts.
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Summary

Second-order Hessian matrices reveal useful tangent
information about Pareto fronts.

Efficient Hessian-vector product in neural networks unlocks
expanding Pareto sets with second-order information.
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Summary

[d Second-order Hessian matrices reveal useful tangent
information about Pareto fronts.

[d Efficient Hessian-vector product in neural networks unlocks
expanding Pareto sets with second-order information.

[ Continuous, first-order accurate Pareto fronts can be
obtained by linearly interpolating dense solutions on the
tangent plane.
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Thank you!

Acknowledgments

We thank Prof. Tae-Hyun Oh

and our reviewers for their
feedback.

Code

https://github.com/mit-g
fx/ContinuousParetoMTL
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