Efficient Continuous Pareto Exploration in Multi-Task Learning

Pingchuan Ma*, Tao Du*, Wojciech Matusik MIT CSAIL

ICML | 2020

Multiple objectives are common in machine learning.

Multiple objectives are common in machine learning.

...but objectives often conflict with each other!

This is characterized by the concept of **Pareto optimality**.

This is characterized by the concept of **Pareto optimality**.

Related work

Multi-objective optimization

Related work

Multi-objective optimization

2018

in et al. 2019

Contributions

We presented the first method to discover continuous approximations to Pareto fronts for large deep-learning problems.

	Solution type	Problem size
Hillermeier 01 Martin & Schutze 18	Continuous	Small
Chen et al. 18 Kendall et al. 18 Sener & Koltun 18	Single discrete	Large
Lin et al. 19	Multiple discrete	Large
Ours	Continuous	Large

Method overview

Method overview

Method overview

Challenges

The most efficient direction for expansion is unknown.

How to recover the Pareto front from one solution?

Deep-learning parameter space has large dimensions.

□ How to scale the method up for large-size problems?

Pareto solutions are discrete.

□ How to build a continuous Pareto front from them?

Challenges

The most efficient direction for expansion is unknown.

□ How to recover the Pareto front from one solution?

Deep-learning parameter space has large dimensions. How to scale the method up for large-size problems?

Pareto solutions are discrete.

How to build a continuous Pareto front from them?

Necessary conditions

$$\sum lpha_i
abla f_i(\mathbf{x}^*) = 0$$

s.t. $\sum lpha_i = 1, \, oldsymbol{lpha} \geq oldsymbol{0}$

Necessary conditions

$$\sum lpha_i
abla f_i(\mathbf{x}^*) = 0$$

s.t. $\sum lpha_i = 1, \, oldsymbol{lpha} \geq oldsymbol{0}$

Specifically:

 $lpha_1
abla f_1(\mathbf{x}^*) + lpha_2
abla f_2(\mathbf{x}^*) = 0$

$$\forall -\epsilon \leq t \leq \epsilon$$

$$\frac{d}{dt} \sum \alpha_i(t) \nabla f_i(\mathbf{x}(t)) = \mathbf{0}$$
Differentiate
$$\int \text{Evaluate at } t = 0$$

$$(\sum \alpha_i \nabla^2 f_i) \mathbf{x}'(0) = -\sum \alpha'_i \nabla f_i(\mathbf{x}(0))$$

$$\underset{x_1 \in \mathbf{X}(\epsilon)}{\text{Ur interest}}$$

$\mathbf{H}v = abla \mathbf{f}eta \in ext{colspan}\{ abla f_i\}$

$\mathbf{H}v = \nabla \mathbf{f}\boldsymbol{\beta} \in \operatorname{colspan}\{\nabla f_i\}$

$\mathbf{H}\boldsymbol{v} = \nabla \mathbf{f}\boldsymbol{\beta} \in \operatorname{colspan}\{\nabla f_i\}$

Challenges

- **The most efficient direction for expansion is unknown.**
 - How to recover the Pareto front from one solution?

Deep-learning parameter space has large dimensions.

□ How to scale the method up for large-size problems?

D Pareto solutions are discrete.

How to build a continuous Pareto front from them?

Scaling it up: the large Hessian issue

(>11M for ResNet-18)

Hessian: HUGE (>100 T
 elements to compute or
 store)
 Hessian⁻¹: EXPENSIVE

Scaling it up: Hessian-vector products (HVP)

Scaling it up: HVP implementation

def hessian_vector_product(loss, network, v):

```
params = network.parameters()
```

jacobian = torch.autograd.grad(loss, params, create_graph=True)

dot = v @ nn.utils.parameters_to_vector(jacobian)

hvp = torch.autograd.grad(dot, params)

return nn.utils.parameters_to_vector(hvp)

$$\mathbf{H}v = rac{\partial^2 f}{\partial x^2}v = rac{\partial}{\partial x}(v^T rac{\partial f}{\partial x})$$

Scaling it up: Krylov subspace method

Key features

- More iterations (bounded by the matrix size) = better solutions
- Each iterations requires matrix-vector products only!

Applying the Conjugate Gradient method to solve a linear system of size 100 x 100.

Scaling it up: Implementation

Deep-learning benchmark test (Hessian size = 1500²)

Lower residual is better

Quick convergence compared with the matrix size

Are 60 iterations cheap?

Are 60 iterations cheap?

Are 60 iterations cheap?

Are 60 iterations cheap? Yes!

Challenges

- **The most efficient direction for expansion is unknown.**
 - How to recover the Pareto front from one solution?

Deep-learning parameter space has large dimensions.
 How to scale the method up for large-size problems?

Pareto solutions are discrete.

□ How to build a continuous Pareto front from them?

Grow some solutions.

Grow more solutions.

Grow even more solutions from more starting points.

Build continuous parameterization from interpolation.

Filter out others and keep Pareto optimal solutions only.

Experiments

G Synthetic Examples

Pareto Expansion

Continuous Parameterization

Ablation Study

Synthetic Example: ZDT2-Variant

- `, = Analytical Pareto set and front
- Gradient directions
- Expanding along the gradients deviates from the true Pareto front.

Synthetic Example: ZDT2-Variant

- `, = Analytical Pareto set and front
- I = Our method
- **D** Tangent to analytical Pareto set

Sufficiency Test

MultiMNIST

Color = different start

□ Lower left 🔗 = better

Large coverage

Necessity Test

MultiMNIST

 $\Box \quad \text{Expanded from } \bigstar$

Ours = most effective exploration

Efficiency Comparison

#Forward/Backward-Propagation

Our method costs <u>less</u>
 computation than
 previous method.

Continuous Parameterization

Red and blue solutions construct the continuous Pareto front

Ablation Study: #iteration

Color = #iteration

□ Lower left 🕜 = better

50 iterations = the best!

Summary

Second-order Hessian matrices reveal useful tangent information about Pareto fronts.

Summary

- Second-order Hessian matrices reveal useful tangent information about Pareto fronts.
- Efficient Hessian-vector product in neural networks unlocks expanding Pareto sets with second-order information.

Summary

- Second-order Hessian matrices reveal useful tangent information about Pareto fronts.
- Efficient Hessian-vector product in neural networks unlocks expanding Pareto sets with second-order information.
- Continuous, first-order accurate Pareto fronts can be obtained by linearly interpolating dense solutions on the tangent plane.

Thank you!

Acknowledgments

We thank Prof. Tae-Hyun Oh and our reviewers for their feedback.

Code

https://github.com/mit-g
fx/ContinuousParetoMTL

